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DENSITY OF PRIMARY GALACTIC PROTONS
IN A SIAB OF ALUMINUM
by Millard L. Wohl

Lewis Research Center

SUMMARY

A Monte Carlo code was written for the IBM 7090 computer. The code con-
siders protons in the primary galactic energy range (0.1 to 10 Bev) impinging at
angles of 0°, 309, 459, and 60°, as well as isotropically, on an infinite slab
of aluminum S5 centimeters thick. The average proton nuclear collision density
in each of six laminar regions of the slab is computed.

In addition, the energy distribution of evaporation neutrons from the re-
sulting excited nuclei is computed, and the statistical model assumed to be
valid. The proton collision density may be used as the spatial source density
distribution for calculations of the transport of the secondary neutrons.

INTRODUCTION

One of the crucial factors in the determination of the feasibility of extra-
terrestrial space flight is the provision of adequate shielding against the high-
energy space radiation encountered. An important aspect of shielding studiles
directed to this end is consideration of secondary radlation produced in the
shell of a space vehicle, which may be far more damaging to personnel or instru-
mentation than the much higher energy primary radiation responsible for its pro-
duction.

Since estimates of the magnitudes of secondary-source intensities are
needed, it was decided to compute, by the Monte Cario method, the spatial and
energy distribution of secondary evaporation neutron sources produced by high-
energy primary galactic protons impinging at angles of 0°, 300, 45°, and 609,
as well as isotropically, on a laterally infinite slab of aluminum 55 centi-
meters thick. Under the assumptions made, the spatial evaporation neutron
source distribution is essentlally equivalent to the proton nuclear collision
density. 1In addition to energy degradation by nuclear collision, protons suf-
fer ionization energy loss between nuclear collisions. The calculation does
not include the intranuclear cascade process, which has been studied at length
in the 0.025- to 0.4-billion-electron-volt energy range (ref. 1).
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F(u),G6(p)
f£(x)
£(u),8(n)
g(y)
g(E-x)
h(E)

N

SYMBOIS
adjustable parameter
emission energy of evaporation neutron, Mev
cumulative distribution functions for u
probability density function for x
probability density functions for u
probability density function for ¥y
probability density function for ¥
maxwellian probability density function for E
counting index
computed evaporation neutron energy distribution
cumulative distribution function for gM
probability density function for proton intercollision path length
probgbility denslity function for p
probability density function for &y
nuclear intercollision distance
dummy variable of integration
nuclear tempersture, Mev
dummy variable
dummy varigble, B - x
coordinate axis designation
normal distance from left side of slab
frequency distribution for E
angle between incident proton directlon and normal to slab boundary
proton mean free path for nuclear collision

cosine of polar scattering angle



gM maximum of finite set of pseudorandom numbers

€ specific pseudorandom nunber

gl,gz,gs,g4 pseudorandom numbers uniformly distributed in O~ 1

g redefined pseudorandom number

ZT total nuclear macroscople ecross section
04 standard devlatlon of Ei

v azlmuthael proton scattering angle
Subscripts:

1,J summgtion indexes

ANATYSTS AND COMPUTING PROCEDURE

Throughout this discussion, frequent reference willl be made to figure 1,
which is the logical flow chert for the Monte Carlo computing process. The
following discusslion corresponds to the sequentisl loglcal portions of figure 1.

Source Proton Energy Spectrum

The source spectrum used is a rough simplification of that glven in refer-
ence 2 (a pointwise spectrum is asssumed to hold over a continuous energy region)
and is assumed to be of the form

N(E)dE « E™ dE (1)
where a = 0.5. A choice of source proton energy is made from this spectrum by
a straightforward rejection technique, as illustrated by branch A of figure 1.

Source Proton Direction

The geometric configuration and the incident-proton direction are illus-
trated in the following sketch:
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The angle 6y may have a value of 0°, 30°, 45°, or 60°.

Distance to Nuclear Collision

The distance to a nuclear collision is selected, as is customary, from the
following exponential distribution:

p(s)ds = zTe’ZTS ds (2)

where ©p(s) is the probability of collision in ds sgbout s. Mapping equa-
tion (2) onto a space of the O = 1 uniform random variable ¢ gives

\
ZT e-ZTs ds! = ¢

s=-iln§=—7\ln§ J

The values of ¢ are generated by a double-entry subroutine that uses the method
of congruences (ref. 3). The proton mean free path for nuclear collision used
is 42 centimeters over the energy range considered (0.1 to 10 Bev). This is an
average of three values given in reference 4. The z-coordinate of the nuclear



collision polnt is compared with the slab thickness of 55 centimeters. If
either 2z > 55 centimeters or 2z < O, the history counter is incremented by one
and a new history begun. If O < z < 55 centimeters, the appropriaste one of
six z-bin counters designated by ANS(KKK) in figure 1 is incremented by one.
(Symbols used in fig. 1 are defined in the appendix.)

Energy Loss Between Nuclear Collisions

Between nuclear collisions, the proton suffers a continuous lonization
energy loss due to electromagnetic interasction with electron and ion flelds.
The energy loss in the intercollision transit 1s estasblished by finding the
energy corresponding to the residual range of the proton, the difference between
the range (which refers only to lonization slowlng down) and the nuclear inter-
collision distance. The maximim of the latter, of course, 1s the full range.
The range-energy date for protons in aluminum given in reference 5 are used
herein. Branches C and D of figure 1 describe the computation of the energy EE
after lonizetion slowing down.

Description and Kinematics of Nuelear Collision

When the proton nuclear collision kinematics were considered, 1t was decided
to idealize the process as follows:

(1) The proton suffers & knock-on direct nonrelativistic collision with a
loosely bound nucleon; thus hydrogen-like scattering kinematics may be used.

(2) A sufficient number of nuclear energy levels are excited so that the
statistical, or "tempersature," model of nuclear excitation is valid (ref. 6).

(3) Only evaporation neutron emission is considered.
The collision mechanice are as follows: The probebility density function

for the cosine of the proton polar scattering angle is, as i1s the case with
neutron-hydrogen collisions,

p(p) = 2p (4)
In order to sample from this distribution, consider the following (ref. 7):

(1) Iet p = largest (gl,gz, . . uy gN), where the ¢'s are pseudorandom
nunbers.,

(2) If &y i1s the largest of (N - 1) &'s, the cumulative distribution
function for gy 1i1s

-1
P(ey) = Eyta - = By = En

since the probability that a pseudorandom number is less than or equal to &y
is merely equal to EpM. The corresponding probabllity density funetion 1s thus



p(&y) = N2(W - 1) (5)

(3) Consider another ¢ = &, and let p = larger (&y,t ).

(4) Then

f(p)a(p) + Flp)e(p)
(N - 1) N-2y + N-1 (8)

N#N-l

p(p)

where f and g are probability density functions, and F and G are cumula-
tive distribution functions. Since N = 2 (eq. (4)), a sample may be obtained
from the distribution p(p) = 2u by setting

p = larger (él) gz) (7)

After a value of p has been determined, & new z~direction cosine Is computed
by means of the cosine law for spherical trisngles, as In branch E of figure 1.
The azimuthel scattering sngle V 1s chosen uniformly between O and 2x by
means of the von Neumann rejection technique (ref. 8), also described in

branch E of flgure 1.

Tt i1s assumed that each nuclesr proton collision gives rise to nuclear ex-
citation and the subsequent production of an evaporation neutron from an ensem-

ble whose energy distribution is given by
h(E) = Be~F/T

where T, the nuclear temperature parameter, was chosen to be 12 million elec-
tron volts.t In order to sample from the distribution

n(E) « Be E/T (8)
set
E = -T In(&;¢5) (9)
Tn order to prove this, let
E = -T In(tq8,) = -T(In &1 + In E,) (10)

IMie value was suggested by R. M. Sternhelmer in a private communication.

L



x =-T In &
and (11)

y="Tln§2

1t is known that

e—x/T T

£(x)

i

=l

li

g(y)

L -y/T
T © / J

where f and g are the probabllity density functlions of x and Yy, respec-
tively.

Now, the joint prcobability density functlon is

E
h(E) = f(x)g(E - x)dx
<)f0 .
1N
=-é% e_X/Te-(E-X)/T dx (13)
(0]
= i? Ee-E/T (14)

Thus, the sampling prescription described by equation (9) produces the correct
probability density function h(E) (eq. (14)).

Since information on relative evaporatlon neutron yields is unavailable at
this time in the 0.4- to 10-billion-electron-volt proton energy range, an evapo-
ration neutron is assumed generated and an energy picked every time a proton
nuclear collision occurs. A histographic energy distribution is thus accumulated
during the calculation. This is indicated in branch F of figure 1.

If the transport of secondary neutrons were of interest, the proton col-
lision density would provide the spatial source distribution, the energy distri-
bution would be given by figure 2, computed from equation (9), and the angular
distribution could be assumed isotropic.

History Termination

Each time a proton is slowed down, either by ionizatlon or collision, its



energy is compared with the cutoff energy, 0.101 billion electron volt. If the
energy is @bove the cutoff point, the history is continued. If the energy is
below the cutoff point, the history i1s terminated. A history is also terminated
if z <0 or gz > 55 centimeters, as mentioned previously.

Statistical Analysis

Since the integral of the collision density in a given z-bin is tabulated
by a pure counting procedure, the statistical variation of this quantity may be
described by a Poisson distribution. Thus, the fractional standard deviation of
wi’ the mean collision density in the ith bin, is given by (ref. 9)

z. 1/2
l:f i+l ;l?i(z)dz]

1
- L7 (1=1,2,...,6) (15)
Vi(2141 - 23) 7

éﬁl Q
R

In branch G of figure 1, a calculation of fractional standard deviations of
the V.'s 1s carried out on the basis of an examination of the spread of re-
sults of 50 subgroups, each containing averages of 100 histories. The counter-

part of equation (15) is

50 1/2
_ (¥ = ¥y)?
L 4= = (1=1,2, ..., 8) (16)

DISCUSSION OF RESULTS

The computed proton nuclear collision densities for incidence angles of
0°, 30°, 45°, and 60°, as well as isotropic incidence, are displayed in figure 3.
Since the slab thickness considered is 55 centimeters, or only 1.25 proton mean
free paths, it i1s to be expected that the angle of incidence will play an im-
portant role in determining the collision density. This 1s indeed the case and
is clearly demonstrated by the increase of collision density with incidence
angle in the shallow portions of the slab, as shown in figure 3.

In most of the cases considered, the fractional standard deviation of the
collision density, according to equation (15), is a few percent. The fractional
standard deviations computed from equation (16) are gbout 25 percent, which
demonstrates the relative inaccuracy of the method of equation (16) for the sub-
group size (100 histories) and the total number of histories run (5000).

The computed secondary neutron energy distribution (fig. 2) displays the
maxwellian shape prescribed by equation (14). The most probable energy is about
12 million electron volts, which 1s to be expected, in view of the temperature



of nuclear excitation assumed. A secondary neutron spatial source distribution
equivalent to the proton nuclear collision density may be assumed for the in-
vestigation of secondary neutron transport.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohlo, October 10, 1963
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Symbols
NCHIS

cos @

F(EE)

E(K) ,R(K)

zZP

L

w

ANS(KKK)

ENERGY(NN)

NFIN

GRPFIN(TI)

APPENDIX - FLOW-CHART SYMBOLS

Definition
number of case histories
z-direction cosine, Q,
proton energy prior to nuclear collision, Bev
source energy distribution function

normelization constent for source energy dis-
tribution

maximum value of source energy distribution
ratio of F(EE) to AMAX

proton mean free path

z~coordinate of collision point

proton nuclear intercollision distance

discrete energies and corresponding proton
renges in aluminum; E(X) in Bev, R(K) in cm

proton range

residual proton range

proton collision counter index
azimuthal scattering angle
cosine of polar scettering angle
polar scattering angle

contents of each of six proton collision
counters

contents of secondary neutron energy bin

total final number of proton histories (5000
in this calculation)

average of collision density over 5000
histories



Branch

Symbols

GRPAVG( I, NUMINT)

SUM(TI)

Definition

average of collision density over 100
histories

fractional standard deviation of collision
density with 100-history subgroups

11
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READ IN
PROTON RANGE -
ENERGY TABLE

INITIALIZE RANDOM
NUMBER GENERATION

Z2=0
=1 PICK €,
sin 6=0

EE = 0.1 + 9.9 &, >——<:>

84

KK = 2/10 + 1

(EE = E(K) - RATIO(E(K) - E(K - 1))

{a) Branches A to D.

Figure 1.

~ Monte Carlo flow chart.
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PICK £3.84 3= CoB 849 = cos 91” +8in 6, sin w cos ¥ )
1/2 )
= 2
sin 6,5 = {1 - cos 9“_1)

IiNS(KKK) = ANS(KKK) + 1<|—><F>
M PICK &q,65 >——< PRORAN = &1 - &, }@: ~12 - 1n(PRORAN) + 1 )—.-( ENERGY(NN) = ENERGY(]»;N) +1 @

N

NUMINT =

520 )
Chis ) NUMINT = 1 GRPFIN(I) = GRPFIN(I) + GRPAVG(I,NUMINT))__‘

MULT = 6 + NUMINT - 5)

FIN = NIF - 1

S -

DIF{I,NUMINT) = GRPFIN{I) - GRPAVG(I,NUMINT}

= SUM{I) + [DIF(I,NUMINT)]?

GREAVG(I,NUMINT) = 0,01 x
[GRPAVG(I,NUMINT) + GRPANS{MULT)) sum(1)

SUM(1) ~ [sum(r)i/l;invlil/ 2 /GRPFIN(I) >_‘

L ANS(I) = O

WRITE OUTPUT

@ GRPFIN(1),I = 1,6
SUM(I),I =

ENERGY (NN , NN

(b) Brancues E to G.

Flgure 1. - Concluded. Monte Carlo flow chart.
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